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Outline

• What is Ψtc ?

• Motivation
• Unsaturated flow; nonsmooth constitutive laws

(Tocci, Jenkins, Kavanagh, Kees,
Howington, Farthing, Miller, K.)

• CFD (Coffey, Keyes, McRae, McMullan, K.)

• Local convergence
• What do you use for a Taylor expansion?
• Quality of derivative approximation.

• Numerical example
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What is Ψtc ?

• Find steady state solutions of

x′ = F(x)

• Mimic temporal integration.
Grow the time step in the terminal phase.

• Addresses failure mode of Newton-Armijo.

• Avoids non-physical results.
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Newton-Armijo: the obvious thing

xn+1 = xn + s where s = λd

and
‖F ′(xn)d +F(xn)‖ ≤ ηn‖F(xn)‖.

You pick λ such that

‖F(xn +λd)‖ ≤ (1−αλ )‖F(xn)‖

where usually α = 10−4.
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Newton-Armijo bottom line

If F is smooth and the computation of d and λ succeed,
then either

• BAD: the iteration is unbounded, i. e. limsup‖xn‖= ∞,

• BAD: the derivatives tend to singularity, i. e.
limsup‖F ′(xn)

−1‖= ∞, or

• GOOD: the iteration converges to a solution x∗

in the terminal phase, λ = 1, and

‖xn+1− x∗‖= O(‖xn− x∗‖ηn +‖xn− x∗‖2).
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So what’s the problem?

• Stagnation at singularity of F ′ really happens.
• steady flow → shocks in CFD

• Non-physical results
• fires go out
• negative concentrations

• Nonsmooth nonlinearities
• are not uncommon: flux limiters, constitutive laws
• globalization is harder
• finite diff directional derivatives may be wrong

Ψtc is one way to fix it.
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DAE Dynamics: semi-explicit

x = (u,v)T and

D

(

u
v

)′

=−
(

f (u,v)
g(u,v)

)

=−F(x), x(0) = x0,

where

D =

(

D11 0
0 0

)

, nonsingular .

Differential variables u. Algebraic variables v.
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Ψtc for smooth problems

xn+1 = xn + sn

where

‖(δ−1
n D+F ′(xn))sn +F(xn)‖ ≤ ηn‖F(xn)‖

and (SER)

δn = max

(

δn−1
‖F(xn−1)‖
‖F(xn)‖

,δmax

)

.
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Theory for smooth problems
Joint with Todd Coffey, David Keyes

If

• Dx′ =−F(x); x(0) = x0; x∗ = limt→∞ x(t).

• DAE has uniform index one (gvv nonsingular near x(t)).

• x∗ is stable steady state.

• δ0 is sufficiently small.

• Update δn with SER.

Then xn → x∗ and local convergence is what you’d expect
from inexact Newton.
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That’s nice, but . . .

Not all nonlinearities are smooth.

• Slope limiters in CFD

• Non-differentiable constitutive laws.
e. g. Groundwater flow in the unsaturated zone.

• Nonsmooth reaction models (see example).
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Nonsmooth Calculus

Assume that F is Lipschitz continuous on RN . Then F is
differentiable almost everywhere.
The generalized Jacobian (Clarke) at x is

∂F(x) = co

{

lim
x j→x;x j∈DF

F ′(x j)

}

You’d like to replace Newton’s method with

xn+1 = xn−V−1
n F(xn)

where Vn ∈ ∂F(xn).
Does that work? How do you compute Vn?
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Piecewise smooth function: φ = φl +φr
∂φ(0) = [φl(0),φr(0)], a set.
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Difference approximations

Scalar functions

∂hφ(x) =
φ(x+h)−φ(x)

h

For Lipschitz functions:

∂hφ(x) ∈ ∂φ(x̄)+O(h)

where |x− x̄| ≤ h.
Same story for scalar constitutive laws in PDEs.
If you differentiate in coordinate directions!
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Difference approximation accuracy
φ ′l (0)+O(h)≤ ∂hφ(x)≤ φ ′r(0)+O(h), so ∂hφ(x) ∈ ∂φ(0)+O(h)
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Semismoothness

A Lipschitz function F is semismooth (Mifflin, Pang, Qi) if

lim
w→0,V∈∂ F(x+w)

‖F(x+w)−F(x)−Vw‖
‖w‖ = 0.

and semismooth of order p at z if

F(z+w)−F(z)−V w = O(‖w‖1+p)

for all w ∈ RN and V ∈ ∂F(x+w) as w → 0.
What you need for local convergence of Newton’s method.
Piecewise smooth functions are semismooth of order 1.
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Why semismoothness?

If

• F semismooth of order p,

• F(x∗) = 0, and

• everything in ∂F(x∗) uniformly nonsingular,

• xc near x∗,

then if
x+ = xc−V−1F(xc), where V ∈ ∂F(xc),

you get fast local convergence

‖x+− x∗‖= O(‖xc− x∗‖1+p).
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Convergence Proof, e = x− x∗

Semismoothness (z = x∗,w = ec,z+w = xc) implies

F(xc)−Vec = O(‖ec‖1+p)

Subtract x∗ from both sides of

x+ = xc−V−1F(xc),

to get

e+ = ec−V−1F(xc) = ec− ec +O(‖ec‖1+p) = O(‖ec‖1+p).

Things get more complicated if xc is far from x∗.
Armijo may fail.
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Formulation of Ψtc

xn+1 = xn + sn

where

‖(δ−1
n D+V (xn))sn +F(xn)‖ ≤ ηn‖F(xn)‖

and

V (x) ∈ ∂F(x̄)+O(h),‖x− x̄‖ ≤ h.
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Local Convergence: en = xn− x∗→ 0

Once close, grow the time step and get fast convergence.
If δmax = ∞
• F semismooth of order 1.

• F(x∗) = 0. Everything in ∂F(x∗) nonsingular.

• ‖(D+δV (x))−1D‖ ≤ 1/(1+βδ ), for all δ > 0.

• x0 sufficiently near x∗.

• h sufficiently small.

then δn → ∞ and

‖en+1‖= O(‖en‖2 +(ηn +δ−1
n )‖en‖+h).

Early stagnation comes from the difference.
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Stable steady state

Dx′ = F(x),x(0) = x0

has consistent initial data and

x(t)→ x∗ as t → ∞

Iteration confined to a neighborhood of the trajectory
x(t) : t > 0.

S(ε) = {z | inf
t≥0

‖z− x(t)‖ ≤ ε}.
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Iterations hug trajectory

S(ε) 

B(ε
T
)

x* 
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Assumptions in S(ε)

• (δ−1D+V (x)) is uniformly bounded and
well-conditioned.

• Vvv(x) is uniformly bounded and well conditioned.

We partition V consistently with F .

F(x) =

(

f (u,v)
g(u,v)

)

and V (x) =

(

Vuu Vuv

Vvu Vvv

)

.

Bottom line: xn → x∗, δn → ∞, everything works.
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Example

−uzz +λ max(0,u)p = 0

z ∈ (0,1),u(0) = u(1) = 0,

where p ∈ (0,1).
Reformulate as a DAE to make the nonlinearity Lipschitz.
Let

v =

{

up if u≥ 0
u if u < 0
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Reformulation

Set x = (u,v)T and solve

F(x) =

(

f (u,v)
g(u,v)

)

=

(

−uzz +λ max(0,v)
u−ω(v)

)

= 0,

The nonlinearity is

ω(v) =

{

v1/p if v≥ 0
v if v < 0
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DAE Dynamics

D

(

u
v

)′

=

(

I 0
0 0

)(

u
v

)′

=

(

u′

0

)

=−
(

f (u,v)
g(u,v)

)

=−F(x), x(0) = x0,
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Why not ODE dynamics?

Original time-dependent problem is

ut = uzz−λ max(0,u)p.

Applying Ψtc to
vt = u−ω(v)

rather than using u−ω(v) = 0 as an algebraic constraint

• adds non-physical time dependence,

• changes the problem, and

• doesn’t work.
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Parameters

• p = .1 and λ = 200. Leads to "dead core".

• δ0 = 1.0, δmax = 106.

• Spatial mesh size δz = 1/2048; discrete Laplacian Lδz

• Terminate nonlinear iteration when either

‖F(xn)‖/‖F(x0)‖< 10−13 or ‖sn‖< 10−10.

Step is an accurate estimate of error (semismoothness).
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Solution
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Analytic ∂F

F(x) =

(

f (u,v)
g(u,v)

)

=

(

−Lδzu
u− v−max(0,v1/p)

)

+

(

λ
1

)

max(0,v).

Since

∂ max(0,v) =











0, if v < 0
[0,1], if v = 0
1, if v > 0,

we get . . .
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∂F

∂F =

(

−Lδz 0
1 −1− (1/p)max(0,v(1−p)/p)

)

+

(

0 λ
0 1

)

∂ max(0,v).
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Convergence
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Mesh Dependence
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Forward Difference ∂F
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Optimal difference increment

Let εF be floating point roundoff. Include this and

V (x) ∈ ∂F(x̄)+O(h+ εF/h)

So, if ‖en‖=
√

h, then

en+1 = O((h+ εF/h)‖en‖+‖en‖2 +h)

= O
(

εF
h1/2 +h

)

which is minimized if h = O(ε2/3
F )≈ 10−10 in IEEE.
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Conclusions

• Ψtc can help if Newton-Armijo fails

• Generalized derivatives can be used in Ψtc

• Difference approximations work well with care
Scalar functions and substitution operators
Differentiate in coordinate directions

• Finite-difference Newton-Krylov needs more structure
(in the works)

• Stagnation tied to difference increment

• Many applications
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